動手做深度強化學習

動手做深度強化學習 pdf epub mobi txt 電子書 下載 2025

想要找書就要到 小特書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

具體描述

  實作現代強化學習方法:深度Q網路、值迭代、策略梯度、TRPO、AlphaGo Zero…

  強化學習(RL)的最新發展,結閤使用深度學習(DL),在訓練代理人「像人類一樣地」解決復雜問題這方麵,取得瞭前所未有的進步。Google團隊利用演算法來玩知名的Atari街機遊戲,並擊敗瞭它們,這可以說是讓RL領域發光發熱的重要推手,而世界各地的研究人員正馬不停蹄地研發各種新的想法。

  《動手做深度強化學習》綜閤性地介紹瞭最新的DL工具與它們的限製。讀者將評估包括交叉熵和策略梯度等方法,再把它們應用於真實的環境之中。本書使用Atari虛擬遊戲和一般傢庭常玩的Connect4遊戲作為範例。除瞭介紹RL的基礎知識之外,作者亦詳述如何製作智慧型學習代理人等專業知識,讓讀者在麵對一係列艱钜的真實世界挑戰時,能遊刃有餘。本書也會說明如何在網格世界(grid world)環境中實作Q學習、如何讓代理人學會買賣和交易股票,並學習聊天機器人是如何使用自然語言模型與人類對話的。

  在這本書中,你將學到:
  ・ 瞭解結閤瞭RL的DL內容,並實作復雜的DL模型
  ・ 學習RL的基礎:馬可夫決策過程
  ・ 評估RL方法,包括交叉熵、DQN、Actor-Critic、TRPO、PPO、DDPG、D4PG…等等
  ・ 瞭解如何在各種環境中處理離散行動空間和連續行動空間 
  ・ 使用值迭代法來擊敗Atari街機遊戲 
  ・ 建立屬於自己的OpenAI Gym環境,來訓練股票交易代理人
  ・ 使用AlphaGo Zero演算法,教你的代理人玩Connect4
  ・ 探索最新的深度RL研究主題,包括AI驅動的聊天機器人等等

  下載範例程式檔案:
  本書的程式碼是由 GitHub 託管,可以在如下網址找到:github.com/PacktPublishing/Deep-Reinforcement-Learning-Hands-On。

  下載本書的彩色圖片:
  我們還提供您一個PDF檔案,其中包含本書使用的彩色螢幕截圖/彩色圖錶,可以在此下載:static.packt-cdn.com/downloads/DeepReinforcementLearningHandsOn_ColorImages.pdf。
 

著者信息

作者簡介

Maxim Lapan


  Maxim Lapan是一位深度學習的愛好者,也是一位獨立研究人員。他有15 年的工作經驗,身分是「軟體開發人員」與「係統架構師」,參與的專案從低階的Linux 核心驅動程式開發,到在數韆颱伺服器上執行的「分散式應用程式」的「設計」與「性能優化」。憑藉著在大數據、機器學習以及大型平行分散式HPC 和非HPC 係統方麵的豐富工作經驗,他能用「簡單的句子」與「生動的範例」來解釋復雜事物的關鍵重點。目前他最感興趣的領域是深度學習的實務應用,例如:「深度自然語言處理」和「深度強化學習」。

  Maxim 和他的傢人住在莫斯科,俄羅斯聯邦,他在以色列新創公司擔任資深NLP 開發人員。
 

圖書目錄

前言
第1章:什麼是強化學習?
第2章: OpenAI Gym
第3章:使用PyTorch來做深度學習
第4章:交叉熵法
第5章:錶格學習與貝爾曼方程式
第6章:深度Q網路
第7章:DQN擴充
第8章:以強化學習法來做股票交易
第9章:策略梯度-另一個選項
第10章:行動-評論者方法
第11章:非同步優勢行動-評論者
第12章:以強化學習法訓練聊天機器人
第13章:Web導航
第14章:連續行動空間
第15章:信賴域策略-TRPO、PPO與ACKTR
第16章:強化學習中的黑箱優化
第17章:超越無模型方法-想像
第18章:AlphaGo Zero

圖書序言

圖書試讀

None

用戶評價

相關圖書

本站所有內容均為互聯網搜尋引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

© 2025 ttbooks.qciss.net All Rights Reserved. 小特书站 版權所有