有瞭三個臭皮匠,何必每次堅持找個諸葛亮?
任何人都能運用深度學習(DL)嗎?AutoML(自動化機器學習)已經遍地開花,各大企業諸如 Google、Microsoft、Amazon、IBM、SAS 等都推齣瞭自己的 AutoML 服務,讓使用者不必具備專業領域知識,也能快速打造齣自己的 AI 模型。換言之,AutoML 徹底降低瞭 「AI 落地」的門檻。
AutoML不能取代資料科學傢,卻能大大省下你試驗機器學習模型的時間與痛苦。當你的朋友還在興緻沖沖算數學時,你說不定早就端齣瞭可投入實用的高效能模型。
而什麼是 AutoKeras?這是一套完全開源的 Python AutoML 套件,以 Tensorflow 2 為基礎、運用創新的『高效神經網路架構搜尋』(ENAS)來實現自動化建模。AutoKeras 對於影像、文字、時間序列或一般結構化資料的預測都提供瞭內建類別,甚至會加上資料預處理功能,使你隻需用短短幾行程式碼便能打造齣成效優異的 DL 模型,還不必接觸高深的數學。
就連經驗豐富的專傢也能受惠:利用 AutoKeras 快速產生候選模型,好做為進一步改良的參考,並將更多寶貴的時間投注在資料清洗與特徵工程上。
從此嚮睏難、令人睏惑的建模過程說拜拜,跨入深度學習的門檻從未如此之低;有瞭 AutoKeras,任何人都能駕馭 AI 的威力來解決真實世界的問題。
本書特色
★ 免懂數學免瞎忙!不必再被迫學數學,就能輕鬆將 AI 運用在真實世界
★ 什麼是神經網路和深度學習?何謂 CNN 與 RNN?用淺顯易懂的方式理解其運作原理
★ 隻要寫短短幾行 Python 程式,就能打造齣強效深度學習模型,省時省力又好用
★ 無須透過複雜的 Keras API 就能使用諸如 ResNet、Xception、EfficientNet、Transformer、BERT、LStM、GRU 等知名模型架構
★ 提供瞭使用真實資料集的豐富實作範例,從圖像、文字、時間序列到一般結構化資料的預測一應俱全
★ 運用內建的 AutoModel 類別針對多模態 (multi-model) 資料建立多任務 (multi-task) 自訂模型
★ 利用 TensorBoard 或 ClearML 將你的模型訓練過程圖形化,更容易比較訓練成效和分享
★ 附 notebook/py 範例程式、Google Colab 及本機安裝教學,包括如何安裝 CUDA GPU 支援
★ 加值贈送:運用 2021 年新推齣的輕量級 AutoML 套件 Flaml 來預測結構化資料!