決斷的演算:預測、分析與好決定的11堂邏輯課(三版) pdf epub mobi txt 電子書 下載 2024

圖書介紹


決斷的演算:預測、分析與好決定的11堂邏輯課(三版)

簡體網頁||繁體網頁
作者 布萊恩‧剋裏斯汀
出版者 行路
翻譯者 甘錫安
出版日期 齣版日期:2022/11/30
語言 語言:繁體中文



點擊這裡下載
    


想要找書就要到 小特書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

發表於2024-12-26

類似圖書 點擊查看全場最低價

圖書描述

●特別說明 本書第一、二版與本版(第三版)中文書名相同,內容沒有增加,本版主要再行修潤與校對。

遠比賽局理論更強大、更全麵的決策思維!
亞馬遜書店一上市,直取「電腦科學類」暢銷榜第1名,
並擠下《快思慢想》榮登「認知科學類」暢銷榜第1名,
齣版多年,長踞「商務決策與問題解決類」榜單Top 50。
2017年「颱灣人工智慧年會」暨「颱灣資料科學年會」紀念贈書
《麻省理工學院技術評論》年度最佳書籍,亞馬遜書店年度最佳科學書籍

【亞馬遜書店數韆則讀者肯定,給予平均4.5顆星超高好評!】
***

  說到演算法,你想到的是政府和大企業如何利用數學模型算計你?
  其實,演算法的本質是「解決問題的一連串步驟」,它長期為各領域帶來洞見與重大變革,還能幫助個人跳脫盲點與錯誤直覺。

  說到電腦,你認為它冰冷且毫無彈性,思考方式跟人腦南轅北轍?
  事實上,我們麵臨的許多挑戰,源頭跟電腦科學傢的睏擾一樣,因此電腦解決問題的方式,能在極大程度上與人們的作法融閤。

  為什麼電腦科學傢說,賽局理論「奈許均衡」的地位言過其實,「現代投資組閤理論」也不是資產配置的好建議?本書訪問近五十年來最知名演算法的設計者,瞭解他們如何教電腦發揮最大效用,自己又從中學得什麼生活智慧,內容顛覆你對於「閤理」的看法,眾多讀者大推:「真是過癮!」

  書中各章以日常問題開場,釐清它們的演算結構後,探討研究者找齣什麼解決方案,以及這些方法對學術、產業及個人生活帶來什麼幫助,像是:

  ►證明「所有雙人賽局至少有一個均衡狀態」的奈許均衡,讓約翰.奈許拿下瞭諾貝爾經濟學獎,但它的地位可能言過其實。為什麼?(賽局理論)

  ►自動駕駛汽車能改善交通阻塞,打造交通天堂?你可能要失望瞭。現在自私駕駛人各行其是的情形其實已接近最佳狀態。(賽局理論,自主行為代價)

  ►棉花糖實驗證明瞭意誌力對日後的成就有深遠影響?事情沒這麼簡單。抵擋得住誘惑的另一個關鍵可能是「期望」……(貝氏法則)

  ►以現代投資組閤理論榮獲諾貝爾經濟學獎的馬可維茲,居然把自己的退休金平均投資在債券和股票上!這未免太不聰明瞭?未必。(過度擬閤)

  ►2010年5月6日,美國股市發生閃電崩盤,短短幾分鐘內有幾傢公司股價飆漲、另幾傢則直線崩跌,這是怎麼迴事?(賽局理論,資訊瀑布)

  ►你打算在十八歲到四十歲期間覓得人生伴侶,那麼幾歲時選定的對象可能最好?(最佳停止點,37%法則)

  ►紙本資料用完隨手往旁邊疊,既沒條理又沒效率?不,根據演算法原理,這是目前已知最精良、效率最佳的資料結構。(快取)

  ►什麼情況下,隨便挑一封電子郵件迴覆,會好過先迴覆最重要的郵件?(排程,往復移動)

  ►為什麼玩吃角子老虎時,贏錢繼續玩同一颱是好策略,但是輸錢就換一颱則太過輕率?(開發與善用)

  電腦科學還能協助我們清楚劃分哪些問題有明確解答、哪些則無,從而選擇自己要麵對什麼,以及要讓其他人麵對什麼,從而增進雙方互動的效率。
  (更詳盡的內容介紹可參閱目錄引文)

推薦人士與各界好評

  洪士灝/颱灣大學資訊工程係教授  
  賴以威/數感實驗室共同創辦人
  林錦宏/高醫大心理係助理教授  
  鄭國威/泛科知識公司知識長
  黃貞祥/清華大學生命科學係助理教授 
  雷浩斯/專職投資人及投資講師
  (「得到」說書App萬維鋼老師書評介紹《指導生活的算法》 )

  ►我一直期待有書能把運算模型和人類心理學結閤起來,這本書遠超乎我的期望,寫得精彩極瞭,而且淺顯易懂,讓所有讀者都能輕鬆理解掌控世界運作的電腦科學,更重要的是,瞭解電腦科學對我們的生活有何影響。——《大腦解密手冊》作者伊葛門

  ►非常齣色。除瞭行文中解釋的電腦科學對於個人和管理都很實用,本書也是演算法和電腦科學以及作者所稱的「運算的斯多葛派」和「運算的善意」這種哲學論述的極佳入門書。——科技網站Boing Boing創辦人柯利‧多剋托羅:

  ►精彩有趣而且提供許多實用建議,告訴我們如何更有效率地運用時間、空間和心力,寫得趣味橫生。——《為什麼我們這樣生活,那樣工作》作者查爾斯‧杜希格

  ►深入淺齣又有趣,讓人讀得欲罷不能。我們都聽說過演算法威力強大,但《決斷的演算》深入淺齣地解說它們的運作方式,以及我們可以如何運用它們,在日常生活中做齣更好的決定。——《搖籃裡的科學傢》作者之一艾莉森‧戈普尼剋

  ►年度必讀大腦類書籍。這是一本以學術研究為基礎,又可應用在實際生活上的好書。作者探討的演算法在生活上的實用程度,超乎我的預期,值得好好研讀。——《富比世》雜誌

  ►我超迷這本書!年輕學生學數學時常說:「數學有什麼用?實際生活上又用不到!」這本書就是最好的答案。書中的概念,無論是37%法則的相對單純性或賽局理論中讓人費解的機率,都相當實用,而且寫得十分有趣,大推!——《大眾科學》雜誌英國版

  ►眾多讀者好評:醍醐灌頂!我學的是經濟,讀瞭這本書之後超想去讀個電腦科學學位。可以的話,我想給這本書十顆星。/好驚人的書,它改變我對許多真實日常問題的看法。/瞭不起的書。不論是一般人或高科技迷都會讀得津津有味。/很有意思。讀完這本書過瞭幾個月,我還不時想到它,它提供瞭很棒的觀點看待世界。/有趣極瞭,我已經藉給好幾個同事讀。/超讚。我重讀這本書好幾次,裡頭有很多很棒的資訊!/真是過癮!

著者信息

作者簡介

布萊恩‧剋裏斯汀(Brian Christian)


  布萊恩‧剋裏斯擁有布朗大學和華盛頓大學的哲學、電腦科學和詩歌學位,現在是加州大學柏剋萊分校的訪問學者。他個人還著有Most Human Human,亦由行路齣版翻譯引介,初版中文書名為《人性較量:我們憑什麼勝過人工智慧?》,這本書為《華爾街日報》暢銷書、《紐約時報》與《紐約客雜誌》年度推薦圖書。他還有眾多作品散見於Wired、《紐約客》雜誌、《大西洋》雜誌、《華爾街日報》、《衛報》和《巴黎評論》等,以及《認知科學》等科學期刊,曾被翻譯為十一種語言。他現在住在舊金山。

湯姆‧葛瑞菲斯(Tom Griffiths)

  湯姆‧葛瑞菲斯曾擔任加州大學柏剋萊分校心理學和認知科學教授,現在是普林斯頓大學心理學與電腦科學教授,亦是該校的運算認知科學實驗室主任。他對於收集與分析資料的新方法(尤其是大數據)如何改變心理學研究,很感興趣,曾經發錶數百篇科學論文,領域包含認知心理學和文化演變等。此外,葛瑞菲斯曾榮獲美國國傢科學基金會、斯隆基金會、美國心理學會以及實驗心理學會等機構獎項。他現在住在紐澤西州的普林斯頓。

譯者簡介

甘錫安


  由科學界踏入「譯界」,現為專職譯者。曾擔任Discovery頻道與資訊雜誌編譯,現仍定期為《科學人》與《BBC知識》等雜誌翻譯。書籍譯作包括《成分迷思:解讀健康新聞的10堂通識課》、《暗池:人工智慧如何顛覆股市生態》與《因果革命:人工智慧的大未來》等書。目前住在有山有海有美食的颱灣頭基隆,熱愛吸收各類知識,正努力朝「全方位譯人」的目標邁進。
決斷的演算:預測、分析與好決定的11堂邏輯課(三版) pdf epub mobi txt 電子書 下載

圖書目錄

◎前言:為什麼我們能跟電腦學決策?
演算法的本質是「解決問題的一連串步驟」,人類麵臨的許多挑戰跟電腦是一樣的:如何運用有限的空間、有限的時間、有限的注意力、未知的事物、不完整的資訊,以及無法預知的未來,並且如何輕鬆而自信地做到;以及如何在此同時與其他目標相同的人溝通。人類和電腦的解決方式融閤程度極高,電腦科學不隻能協助我們簡化問題以取得進展,甚至能提供具體的解決方法。本書將介紹前述難題的基本數學結構,以及工程師如何教電腦發揮最大效用,並瞭解人腦如何剋服相同限製。作者訪問瞭近五十年來最知名演算法的設計者,談談他們的研究對自己的人生有何影響,以及他們怎麼將所學用於生活。

◎第一章 最佳停止點——什麼時候該見好就收?
►祕書問題 ►為什麼是37%? ►把握最佳伴侶
►孰優孰劣一目瞭然──完全資訊賽局 ►什麼時候賣齣房子最好?
►什麼時候該停車? ►何時應該見好就收? ►隨時準備停止
盡量羅列選項,小心權衡後選齣最好的一個,纔是理性決策?實際上由於時間有限,決策過程最重要的麵嚮是:何時應該停止。聘人、租屋、找車位、賣房子,以及尋覓伴侶和投資獲利時見好就收等,都是要在選項逐一齣現時做齣最佳選擇,它們真正睏擾人的是可以考慮的選項有多少。依各狀況條件不同(比如能否吃迴頭草、是否有明確標準),這章解釋瞭37%法則、思而後行法則、臨界值法則等,教你如何避免太早決定或找太久,以及何時該降低或提高標準、還有標準該調整多少……

◎第二章 開發與善用——嘗試新歡?還是固守舊愛?
►開發與善用 ►把握時間 ►贏錢繼續玩、輸錢換一颱
►吉廷斯指數 ►遺憾與樂觀 ►網路上的土匪
►用演算法審視臨床試驗 ►變化不定的世界 
►開發…… ►……以及善用
開發是蒐集資料,它能提高發現最佳選擇的機會;善用則是運用現有資訊,取得已知的良好結果,兩者各有利弊。人們大多把決策視為彼此孤立,每次分別尋找期望值最高的結果。其實決策極少是孤立的,如果你思考的是日後麵對相同選項時要怎麼做,那麼權衡是要開發還是善用,就非常重要。本章以電腦科學中最能體現這兩者之矛盾,名稱取自吃角子老虎機的「多臂土匪問題」,闡述應該如何隨時間而改變目標,並且說明為何閤理的行動過程多半未必會選擇最好的目標。

◎第三章 排序——依照順序排列
►排序的大用處 ►排序的苦惱 ►大O記號──衡量最差狀況的標準
►兩種平方:氣泡排序和插入排序 ►破除平方障礙:各個擊破
►比較之外:贏過對數 ►亂得有理─照順序排好之後,要幹嘛?
►名次未必反映實力──運動賽事裡的演算法
►排序效率差的價值──穩固 ►血腥排序:啄序和優勢階級
►以競賽取代打鬥
排序對於處理各種資訊都十分重要。電腦科學傢經常要權衡「排序」和「搜尋」兩者,這項權衡的基本原則是:花心力排序資料,目的是讓我們日後不用花費心力搜尋資料。於是這個問題變成:如何事先評估資料未來的用途?電腦科學指齣,混亂和秩序造成的危險都可以量化,它們的成本都能以「時間」這個基準來呈現。Google搜尋引擎之所以強大,其實是拜預先排序之賜;但對於另外一些狀況,保持混亂往往更有效率。另外討論演算法的最差情況錶現(以排序而言是「最差完排時間」),可以讓我們確定某個程序能在期限內完成,排定運動賽程便是一例。

◎第四章 快取——忘掉就算啦!
►把常用的東西放在手邊──記憶體階層
►把隔最久纔會再用的資料剔除──貝雷迪演算法
►把圖書館內外翻轉 ►街底的那片雲──距離非常重要
►傢中的快取──收納空間
►關於書麵資料怎麼歸檔,收納專傢大多說錯瞭
►為最可能用到的東西騰齣空間──遺忘麯線 ►經驗的反效果
你的收納問題其實與電腦管理記憶體時麵臨的挑戰類似:空間有限,要如何既省荷包又省時間?快取的概念是把常用資料放在手邊備用,快取裝滿時為瞭騰齣空間放新資料,得剔除一些舊資料——但剔除哪些好呢?電腦科學傢探究瞭「隨機剔除」、「先進先齣」(先剔除最舊的)以及「最近最少使用法」等,甚至發展齣能預測未來並執行已知最佳策略的演算法。這方麵的研究啟發瞭亞馬遜書店的「預測包裹寄送」專利,還扭轉瞭心理學傢對於人類記憶的看法。

◎第五章 排程——優先的事情優先處理
►「花時間」如何成為一門科學 ►如果「在期限內完成」最重要
►要是「劃掉待辦清單上越多項目越好」
►先搞清楚用什麼標準來評量成果
►腳麻掉是要怎麼逃!──優先權反轉與優先權約束
►第一道障礙 ►先擱下手上的事──占先與不確定性
►讓其他工作插隊的代價──上下文交換 
►忙到變成在空轉──往復移動
►錯過這次,就等待下迴─中斷接閤
重要且緊急、重要但不緊急、不重要但緊急、不重要但不緊急……,時間管理大師總教人照這順序處理事情,但電腦科學傢會要你先搞清楚「用什麼標準來評量成果」。是在期限內完成最重要?還是盡量縮短讓客戶等待的時間?抑或劃掉待辦清單上越多項目越好?不同的評量標準得採用不同的作業策略。本章還用電腦的「上下文交換」探討讓其他工作插隊的代價,用「往復移動」提醒忙到變成在空轉的徵兆;並告訴你如何在「反應能力」和「處理能力」間取捨,為何有時完成工作的最佳策略反而是慢下來。

◎第六章 貝氏法則——預測未來
►與貝斯牧師一起逆嚮推理 ►拉普拉斯定律
►貝氏法則和事前看法 ►哥白尼原理 ►當貝斯遇見哥白尼
►真實世界的事前機率…… ►……以及預測它們的規則
►小數據與心靈 ►我們的預測如何讓我們認識自己
►機械複製時代中的事前分布
十八世紀的英國,賭博這個領域不僅深深吸引傑齣數學傢,也吸引瞭牧師湯瑪斯.貝斯,他由於研究彩券的中獎率,而對於「在不確定下進行推測」的歷史帶來重大影響。他認為由過去的假設狀況進行正嚮推理可提供基礎,讓我們逆嚮推齣最可能的答案。其他科學傢繼續研究預測事情的各種方法,像是:如何把各種可能假設狀況濃縮成單一期望值、根據事件類型提供適當的事前機率。其實我們腦中已儲存許多精確的事前分布,因此經常可由少量觀察結果做齣不錯的預測,換句話說,小數據其實是偽裝的大數據。

◎第七章 過度擬閤——少,但是更好
►考慮得更複雜,卻預測得更不準 ►資料的偶像崇拜
►舉目所見盡是過度擬閤 ►揪齣過度擬閤─交叉驗證
►如何對抗過度擬閤──懲罰複雜 ►少就是好─試探法的優點
►歷史的權重 ►什麼時候應該少想一點?
談到思考,我們往往覺得想得越多越好:列齣的優缺點越多,做齣的決定越好;列齣的相關因素越多,越能精準預測股價。實際上統計模型倘若太過複雜,使用過多參數,會太容易受我們取得的資料影響,可能隨參與者不同而齣現大幅差異。這就是統計學傢說的過度擬閤(又譯為過度配適)。機器學習的一大重要事實是:考慮因素較多、比較複雜的模型,未必比較好。這章演示瞭過度擬閤如何扭麯我們對資料的解讀,點齣日常生活中俯拾皆是的過度擬閤事例,並且教你如何藉由交叉驗證等方法揪齣過度擬閤(像是怎麼分辨真正的人纔和僅是懂得揣摩上意的員工?)並且對抗它。

◎第八章 鬆弛——放鬆點,不求完美纔有解
►最知名的最佳化問題─業務員齣差問題 
►量化難度──用「不可能程度」來解答
►放鬆問題,提供解題的起點 ►無限多的灰階:連續鬆弛法
►拉氏鬆弛法──隻要你願意付齣點代價 ►學習放鬆
過去幾十年來電腦科學傢發現,無論使用多快的電腦,或程式設計得多厲害,有一類問題就是不可能找齣完美解方。麵對無法解決的挑戰時,你毋須放棄,但也別再埋頭苦幹,而該嘗試第三種作法。電腦科學會界定問題是「可解」還是「難解」,遇到難解問題時會先「放鬆問題」:也就是先去除問題的某些限製,再著手解決它。最重要的放鬆方法比如「限製鬆弛法」、「連續鬆弛法」,以及付齣點代價、改變規則的「拉氏鬆弛法」……

◎第九章 隨機性——什麼時候該讓機率決定
►抽樣 ►隨機演算法 ►禮讚抽樣
►取捨「確定程度」──電腦給的答案不一定對 ►山丘、山榖和陷阱
►離開局部最大值 ►模擬退火 ►隨機性、演化和創造力
乍看之下,隨機性似乎和理性正好相反,它代錶我們放棄這個問
隨機性乍看之下似乎和理性相反,代錶我們放棄這個問題,採取不得已的手段。但你若是知道隨機性在電腦科學中扮演多吃重的角色,可能會非常驚訝。麵對極為睏難的問題時,運用機率可能是審慎又有效的解決方法。隨機演算法未必能提齣最佳解,但它不用像確定性演算法那麼辛苦,前者隻要有計畫地丟幾個硬幣,就能在短短時間內提齣相當接近最佳解的答案,它解決特定問題的效果,甚至超越最好的確定性演算法。這章將要告訴你依靠機率的時機、方式,以及仰賴的程度。

◎第十章 網路——我們如何互通聲息
►封包交換──為瞭非連續交談而創 
►應答─怎麼知道訊息有沒有送達?
►指數退讓──寬恕的演算法 ►控製流量和避免壅塞
►祕密管道:語言學中的流量控製 
►緩衝爆滿──笨蛋,問題齣在延遲! ►既然遲瞭,不如就別做瞭
人類互通聲息的基礎是「協定」,也就是程序和預期的共通慣例,例如握手、打招呼和禮貌,以及各種社會規範。機器間的聯繫也不例外。在人際關係中,這類協定是微妙但長久存在的焦慮來源。我前幾天傳瞭個訊息,從何時開始我會懷疑對方根本沒收到呢?你的迴答怪怪的,我們之間是不是有什麼誤會?網際網路問世後,電腦不僅是溝通管道,也是負責交談的聯絡端點,因此它們必須解決本身的溝通問題。機器與機器間的這類問題以及解決方案,很快便成瞭我們藉鏡的對象。

◎第十一章 賽局理論——別人是怎麼想的?
►遞迴 ►奈許,就是賽局達到均衡 ►不採取「均衡」作法的代價
►公有地悲劇 ►機製設計:改變賽局 ►演化進行的機製設計
►資訊瀑布:悲慘的理性泡沫 ►忠於自己
賽局理論廣泛影響經濟學和社會科學領域,然而除非賽局參與者找得到奈許均衡,它的預測能力纔會造成影響,但是電腦科學傢已經證明,純粹尋找奈許均衡是難解問題……
另外傳統賽局理論有個見解:對一群依據自身利益採取理性行動的參與者而言,「均衡」或許不是最好的結果。「演算法賽局理論」依據電腦科學原理,採用瞭這個見解並加以量化,創造齣「自主行為代價」這個度量,結果發現某些賽局中,自主行為的代價其實沒有很高,這意謂著該係統不論細心管理或放任不管都差不多。

◎結語:運算的善意
對於人類的某些問題,如今已經找到解決的演算方法;即使尚未得到所需結果,但知道自己使用最佳演算法,也會讓人感到放心。此外電腦科學還能協助我們,清楚劃分哪些問題有明確解答、哪些問題則無,從而選擇要麵對什麼——包括自己要麵對什麼,以及要讓別人麵對什麼,其原則便是運算的善意。現今的電腦做的,並非「盡量羅列選項,找齣最好的一個」。有效的演算法會做齣假設,偏嚮選擇較簡單的解答、權衡誤差代價和延遲代價,接著冒險一試。這些都不是我們難以理性麵對時的讓步,它們本身就是理性的方法。

圖書序言

前言
 
為什麼我們能跟電腦學決策?
 
  想像你正在舊金山找房子。這城市可說是全美最難找到房子的地方,有繁榮的高科技業,加上嚴格的分區使用法規,因此房價跟紐約一樣昂貴,很多人認為甚至不輸給紐約。新物件齣現沒多久就下架,房地產公開說明會人山人海,往往得私下先塞訂金支票給屋主纔買得到。
 
  由於市場如此熱絡,很難容許理性消費者先蒐集資料,深思熟慮後纔下決定。四處閒逛或透過網路買屋的人,可以比較許多選擇後再下決定,但想在舊金山買房子的人,要不就買下眼前這棟房子,拋下其他選擇,要不就馬上走人,不再迴頭。
 
  為瞭簡化起見,我們姑且假設你隻想盡可能提高買到最好房子的機率。你的目標是把在「錯過好機會」和「說不定還有好機會」之間徘徊的機率降到最低。你立刻發現自己陷入兩難:如果沒有判斷基準,要怎麼知道某棟房子是不是最佳選擇?但如果看過的房子不夠多,又怎麼知道判斷基準在哪?你取得的資訊越多,越能掌握真正的好機會,但在此之前錯過好機會的機率也越高。
 
  那麼你該怎麼做?倘若蒐集資訊反而可能不利,那麼該如何做齣明智決定?這種狀況十分殘酷,簡直可以說是矛盾。
 
  大多數人麵臨這類問題時,直覺上通常認為必須在取捨間取得某種平衡,得看過夠多的房子纔能建立標準,再依據標準找齣想要的房子。這種權衡概念非常正確,然而大多數人沒辦法明確說齣平衡點在哪。所幸這確實有明確答案:
 
  是37%。
 
  如果你希望達成買到最佳房子的最佳機率,請把總時間的37%拿來看房子(如果打算花一個月找房子,那就是十一天)。把清單留在傢裡,單純用來設定標準。但是花瞭37%的時間後,就要準備齣手,隻要一發現比已經看過的房子更好的選擇就買下來。這不隻是尋找和放棄之間的平衡點,也是經過驗證的最佳解決方案。
 
  我們之所以知道答案,是因為找房子屬於數學中的「最佳停止問題」。37%法則定義齣一連串解答這類問題的簡單步驟,電腦科學傢稱之為演算法。其實最佳停止問題可以用來解決生活中的許多狀況,找房子隻是其中一例。生活中我們經常遇到選擇或放棄一連串選項的情形,比方說:要在停車場繞幾圈纔找得到車位?投資高風險事業要多久纔會開始迴收?賣房賣車時要忍耐多久纔能等到更好的價錢?
 
  還有一種更難抉擇的狀況亦屬此類問題,那就是約會。最佳停止是連續單偶製的科學原理。
  簡單的演算法不僅能協助你找到好房子,還適用於遭遇最佳停止問題的各種狀況。
 
  我們每天都在跟這類問題纏鬥不休(隻不過比起停車,詩人花比較多墨水描述愛情的磨難),有些狀況也真的很摺騰。但其實沒必要這麼糾結,有些問題數學已經解決瞭。心急如焚的房客、駕駛人和忐忑不安的求婚者,其實都沒必要煩惱;他們不需要治療師,隻需要演算法。治療師可以教他們如何避免過於衝動和過度思考;演算法則能明確告訴他們,這個平衡點就是37%。
 
  由於我們生活的空間和時間都有限,每個人都遭遇到一類問題。在一天或十年中,我們應該做什麼、或應該不做什麼?應該容忍什麼程度的混亂?什麼樣的秩序算是過度?新事物和心頭好各佔多少比例,纔能使生活最讓人感到滿足?
 
  似乎隻有人會麵臨這類問題?其實不然。半個多世紀以來,電腦科學傢一直在探究這類日常睏境,有時還試圖解決,像是:處理器該如何分配它的「注意力」,以最少時間執行使用者要它做的工作,同時盡量少做白工?它什麼時候應該轉而處理不同工作,一開始又應該接受幾項任務?怎麼運用有限的記憶體資源最好?它應該蒐集更多資料,或是依據已有的資料採取行動?
 
  人類要把握每一天已經很不容易,電腦卻能輕鬆寫意地把握每一毫秒。電腦的工作方式可以帶給我們許多啟發。
  
  討論演算法對人類生活有何助益似乎有點奇怪。說到「演算法」,許多人想到的是大數據、大政府和大企業神祕難解的算計,這類算計在現代世界基礎建設中的比重越來越大,但稱不上實用智慧或人生指南。不過演算法其實是解決問題的一連串步驟,而且範圍比電腦更廣,歷史也更悠久。早在機器使用演算法之前,人類就開始使用它們瞭。
 
  「演算法」這個詞,源自撰寫手算數學書的九世紀波斯數學傢阿爾花拉子模(al-Khwārizmī)。他寫的書名為《還原和對消的規則》(al- Jabr wa’l-Muqābala),其中的al-jabr後來演變成代數(algebra)。然而目前已知最古老的數學演算法,其實早於花拉子模的著作。有一塊巴格達附近齣土、歷史長達四韆年的蘇美黏土闆,上頭就記載瞭長除法。
 
  不過用得上演算法的領域不隻數學。你參考食譜做麵包、依照圖樣打毛衣,或是以一定方式用鹿角末端敲擊燧石,在燧石上形成尖銳邊緣(這是製作精細石器的重要步驟),都是依循演算法在做事。早從石器時代開始,人類科技中就蘊含著演算法。
 
  本書將探討人類演算法的設計概念,也就是:針對每天麵臨的挑戰尋找更好的解決方案。把電腦科學解決問題的方法套用到日常生活上,會影響許多層麵。首先,演算法能提供實用且具體的建議,協助解決特定問題。最佳停止問題告訴我們,何時該大膽跳過、何時又該留意機會。開發與利用取捨告訴我們,如何在嘗試新事物和享受喜愛的事物間找到平衡點。排序理論教我們如何(以及是否應該)整理辦公室。快取理論教我們如何把物品收進櫥櫃。排程理論則教我們如何安排工作。
 
  到瞭下一個階段,電腦科學告訴我們一套字彙來瞭解這些領域中更深入的原理。卡爾.薩根(Carl Sagan)曾說:「科學不隻是知識,更是一種思考方式。」即使是混亂得難以進行嚴謹數值分析或有現成答案的狀況,運用直覺和化簡問題後加以思考所得到的概念,也能讓我們瞭解關鍵問題並獲得進展。
 
  更廣泛地說,以電腦科學的眼光看問題,有助於我們瞭解人類心智的特質、閤理性的意義,並且探究一個最古老的問題:人類如何求生。把認知當成「解決環境造成的基本運算問題的方法」仔細探討,可能徹底改變我們對人類理性的看法。
 
  就算電腦科學真能教我們如何思考以及該怎麼做好瞭,但我們想照著做嗎?看看科幻片裡的人工智慧和機器人,你該不會真的想要像它們那樣過活吧?說到研究電腦內部運作可能教我們如何思考、下決定、該相信什麼以及怎麼做好,許多人不隻會把它想得太簡單,實際上是會想錯方嚮。
 
  部分原因是,說到電腦,我們想到的是冰冷的機械化確定性係統——機器套用死闆的演繹邏輯,點滴不漏地羅列所有選擇,琢磨齣正確答案,無論必須思考得多久、多辛苦。的確,最早構思齣電腦的人就希望電腦是這樣:艾倫.圖靈(Alan Turing)定義中的運算就像數學傢一樣,仔細執行一連串冗長運算,得齣萬無一失的正確解答。
 
  因此說來你或許會驚訝──現代電腦麵臨難題時,其實不是這麼做的。當然,直截瞭當的計算對現代電腦而言輕而易舉。跟人類交談、修復損壞的檔案或下贏一盤圍棋等,這類沒有明確規則、缺少必要資料,或是必須考慮多如繁星的可能纔能找齣正確解答的問題,纔是電腦科學最大的挑戰。研究人員為瞭解決極端睏難的問題而開發的演算法,已經使電腦不再需要依賴繁重的計算。相反地,執行實際工作必須接受機率,以時間換取精確性,還要懂得運用近似法。
 
  電腦解決真實世界問題的能力越來越強,不僅提供演算法給人運用到生活上,還定下更好的標準讓我們得以比較人類認知本身。近十幾二十年,行為經濟學主張:人類既不理性又容易犯錯,主因是人類大腦結構缺陷重重且各不相同。這個妄自菲薄的說法日益流行,但仍有些問題有待探討。舉例來說,為什麼即使是四歲小孩,執行視覺、語言和因果推論等認知任務時,
依然能超越超級電腦?
 
  電腦科學衍生的日常問題解決方案,則對人類心智提齣完全不同的看法。它們認為生活本就睏難重重,人們犯下的錯誤透露的,是問題本身的睏難之處,而非人類大腦不可靠。用演算法思考世界,學習我們所麵臨的問題的基本結構、以及其解決方案的屬性,能讓我們瞭解人類其實已經很瞭不起,同時更加理解我們所犯的錯。
 
  事實上,人類經常麵對電腦科學傢傷透腦筋的許多難題。我們經常得剋服不確定性、時間限製、資訊不足和變動快速的世界,做齣決定。對於當中的某些情況,即使是最尖端的電腦科學,也還沒找齣高效率又永遠正確的演算法;而某些情況則根本不存在這樣的演算法。
 
  然而即使在尚未找到完美演算法的領域,一代代電腦科學傢和棘手真實世界問題纏鬥多年後,也得齣瞭許多心得。這些得來不易的規則違反我們心目中的閤理性,聽起來也不像數學傢描述世界的那些條理分明的嚴密規則。這些規則說:不一定要考慮所有選擇,不一定非得追求看來最好的結果,偶爾可以製造混亂。看到紅綠燈就等一下。相信直覺,別思考太久。放鬆,拋個硬幣。寬恕,記住這個教訓就行。誠實對待自己。
 
  依據電腦科學知識過生活說來沒那麼糟,何況它有證據支持─許多忠告可是無憑無據呢。
 
  設計供電腦使用的演算法,原本就是介於兩個學科之間的專業──它是數學與工程學的奇特混閤體,因此設計供人類使用的演算法自然也沒有明確隸屬哪個學科。今天,演算法設計不僅必須藉助電腦科學、數學和工程學,還要藉助統計學和作業研究等。我們思考為機器設計的演算法與人類心智的關聯時,也需要參考認知科學、心理學、經濟學和其他學科。
 
  我們作者都很熟悉這個跨學科領域。布萊恩念過電腦科學和哲學,念研究所時主修英文,後來的工作則跨這三個領域。湯姆念的是心理學和統計學,後來成為加州大學柏剋萊分校教授,花很多時間研究人類認知和運算間的關係。不過沒有人通曉為人類設計更佳演算法的所有相關領域,因此我們在尋找過好生活的演算法時,訪問瞭近五十年來最知名演算法的設計者。他們個個頭腦頂尖,我們問他們,他們的研究對自己的人生有何影響,例如尋找配偶到整理襪子等等。
 
  從下一章開始,我們將探討電腦和人類麵臨的最大挑戰:如何運用有限的空間、有限的時間、有限的注意力、未知的事物、不完整的資訊,以及無法預知的未來,並且如何輕鬆而自信地做到;以及如何在此同時與其他目標相同的人溝通。我們將會瞭解這些難題的基本數學結構,以及工程師如何教電腦發揮最大效用(他們的方式往往齣乎意料)。我們還將瞭解人腦如何運作,瞭解它如何處理相同問題和剋服相同限製,這些方法與電腦的方法不同卻關聯極深。最後,我們不僅將深入瞭解各類日常問題、以全新方式觀察人們遭遇的各種睏境背後的美麗結構、認識人類和電腦的解決方式融閤程度極高,還將獲得更深刻的東西──我們會有描述周遭世界的新語彙,並且有機會重新認識自己。

圖書試讀

◎第十一章 賽局理論
 
奈許,就是賽局達到均衡
 
你知道規則,我也知道…… 我們瞭解這個遊戲,我們準備參與。
 
──英國歌手瑞剋.艾斯裏(Rick Astley),上文引自〈Never Gonna Give You Up〉一麯
 
賽局理論涵括各種閤作與競爭情境,但這個領域的起源相當類似撲剋牌手對決:兩方互相角逐,一方的獲益就是另一方的損失。分析這些賽局的數學傢試圖從中找齣均衡(equilibrium),也就是一套可供雙方遵循、並且讓雙方知道對方的行動後,也不想改變本身行動的策略。
 
這種狀態稱為「均衡」是因為它很穩定,也就是雙方即使再怎麼考慮,都不會改變自身選擇。我用你的策略考慮後,很滿意我自己的策略;你用我的策略考慮後,也很滿意你自己的策略。
 
舉例來說,在剪刀石頭布中,均衡的意思是完全隨機從這三種
 
手勢齣一種,齣每種手勢的機率大約是 1/3。使這個均衡穩定的因素是,如果雙方都採取這種1/3-1/3-1/3策略,那麼對雙方而言,除瞭堅持下去之外別無更好的方法(如果我們試著多齣幾次石頭,對手很快就會注意到,開始經常齣布,這樣又會使我們多齣幾次石頭,如此不斷循環,最後雙方都會迴歸原本的1/3-1/3-1/3策略)。
 
數學傢約翰.奈許(John Nash)於1951年證明,所有雙人賽局至少有一個均衡狀態。這項重大發現在賽局理論領域影響深遠,也讓奈許獲頒1994年諾貝爾經濟學獎(並促成《美麗心靈》〔A Beautiful Mind〕這部講述奈許生平的小說和電影問世)。現在這樣的均衡經常被稱為奈許均衡,也就是前述的撲剋牌手丹.史密斯想追求的狀況。
 
從錶麵上看來,雙人賽局一定存在奈許均衡這一點,似乎可以讓我們擺脫撲剋牌和許多類似競爭中,常見的鏡廳遞迴現象。我們感到自己捲入遞迴漩渦時,一定有機會脫離對手的掌控,尋求均衡,發現最佳策略,採取閤理的行動。在剪刀石頭布中,如果你知道隨機齣拳其實就是長期而言的不敗策略,就不用花力氣觀察對手的錶情,猜測對手下一手可能齣什麼拳瞭。
 
更籠統地說,奈許均衡能夠預測任何一組規則或誘因的穩定長期結果,因此它能做為預測和擬定經濟政策及一般社會政策的重要工具。諾貝爾獎得主羅傑.麥爾森(Roger Myerson)曾說,奈許均衡「在經濟學和社會科學領域擁有基本且廣泛的影響力,相當於DNA雙螺鏇的發現在生物學領域中的影響力。」

決斷的演算:預測、分析與好決定的11堂邏輯課(三版) epub 下載 mobi 下載 pdf 下載 txt 電子書 下載 2024


決斷的演算:預測、分析與好決定的11堂邏輯課(三版) epub 下載 mobi 下載 pdf 下載 txt 電子書 下載 2024

決斷的演算:預測、分析與好決定的11堂邏輯課(三版) pdf epub mobi txt 電子書 下載 2024




想要找書就要到 小特書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

用戶評價

類似圖書 點擊查看全場最低價

決斷的演算:預測、分析與好決定的11堂邏輯課(三版) pdf epub mobi txt 電子書 下載


分享鏈接





相關圖書




本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

友情鏈接

© 2024 ttbooks.qciss.net All Rights Reserved. 小特書站 版權所有