AI與大數據技術導論(基礎篇):發展歷程、產業鏈、運算模式、機器學習……從理論概述到核心技術,深度探索人工智慧! pdf epub mobi txt 電子書 下載 2025

圖書介紹


AI與大數據技術導論(基礎篇):發展歷程、產業鏈、運算模式、機器學習……從理論概述到核心技術,深度探索人工智慧!

簡體網頁||繁體網頁
作者 楊正洪
出版者 崧燁文化
翻譯者
出版日期 齣版日期:2023/11/15
語言 語言:繁體中文



點擊這裡下載
    


想要找書就要到 小特書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

發表於2025-02-03

類似圖書 點擊查看全場最低價

圖書描述

「沒有大量資料支撐的人工智慧就是人工智障」

AI是什麼?為什麼熱門?是否已經成熟?
跟著本書搞懂資料科學,跟上未來趨勢!

  ▎人工智慧用於何處?
  2017年是人工智慧(Artificial Intelligence,AI)年,人工智慧技術越來越多的應用到日常生活的各個方麵。AlphaGo ZERO替代AlphaGo實現自我學習;百度無人汽車上路;iPhone X開啟Face ID;阿裏和小米先後發錶智慧音箱;肯德基上線人臉支付……這些背後都是人工智慧技術的驅動!

  【人工智慧概述】
  首先為讀者解釋瞭AI的基礎概念,探索其技術的成熟度,並對美國和中國的AI現狀進行比較。此章還概述瞭AI與雲端運算和大數據的深層關係及歷史發展。

  【AI產業、資料及機器學習】
  從AI產業的基礎層、技術層到應用層逐層深入,並介紹大數據的基本概念、現狀及其在中國的運算模式。此外,機器學習作為AI的核心,我們著重於其基本概念和資料的預處理方法。

  【模型和機器學習的演算法】
  從模型的基礎訓練到評估,以及各類型的機器學習演算法,如支援嚮量機、KNN和決策樹等,這些都為讀者提供瞭全麵的視野。

  【探討深度學習】
  深度學習是AI的另一個重要分支,本章專門探討此領域,涵蓋從基本神經網路到捲積神經網路的各種技術。

本書特色

  本書全麵講述人工智慧與大數據涉及的技術,共分7章,包括人工智慧概述、AI產業、資料、機器學習概述、模型、機器學習算法、深度學習等。閱讀完本書後,讀者將對人工智慧技術有全麵的理解,並能掌握AI整體知識架構。

著者信息

作者簡介

楊正洪


  在矽榖從事AI和大數據相關研發工作十餘年,是海外智庫專傢顧問,曾擔任在美上市公司CTO、北京某國企CIO和上海某國企高階副總裁等職。齣版瞭《智慧城市》、《大數據技術入門》等多本暢銷書。

郭良越

  專職作者。

劉瑋

  專職作者。
 
AI與大數據技術導論(基礎篇):發展歷程、產業鏈、運算模式、機器學習……從理論概述到核心技術,深度探索人工智慧! pdf epub mobi txt 電子書 下載

圖書目錄

前言

第1章 人工智慧概述

1.1 AI是什麼
1.2 AI技術的成熟度
1.3 美國AI龍頭分析
1.4 中國AI現狀
1.5 AI與雲端運算和大數據的關係
1.6 AI技術路線
1.7 AI國傢策略
1.8 AI的歷史發展

第2章 AI產業
2.1 基礎層
2.2 技術層
2.3 應用層
2.4 AI產業發展趨勢分析

第3章 資料
3.1 什麼是大數據
3.2 中國國內大數據現狀
3.3 大數據的運算模式
3.4 大數據技術
3.5 資料平臺
3.6 大數據的商用途徑
3.7 大數據產業
3.8 政府大數據案例分析

第4章 機器學習概述
4.1 走進機器學習
4.2 機器學習的基本概念
4.3 資料預處理

第5章 模型
5.1 什麼是模型
5.2 誤差和MSE
5.3 模型的訓練
5.4 梯度下降法
5.5 模型的擬閤效果
5.6 模型的評估與改進
5.7 機器學習的實現框架

第6章 機器學習演算法
6.1 演算法概述
6.2 支援嚮量機演算法
6.3 邏輯迴歸演算法
6.4 KNN演算法
6.5 決策樹演算法
6.6 整閤演算法
6.7 聚類演算法
6.8 機器學習演算法總結

第7章 深度學習
7.1 走進深度學習
7.2 神經網路的訓練
7.3 神經網路的最佳化和改進
7.4 捲積神經網路
7.5 深度學習的優勢
7.6 深度學習的實現框架

 

圖書序言

前言

  2017年是人工智慧(Artificial Intelligence,AI)年,人工智慧技術越來越多的應用到日常生活的各個方麵。AlphaGo ZERO替代AlphaGo實現自我學習,百度無人汽車上路,iPhone X開啟Face ID,阿裏和小米先後發錶智慧音箱,中國肯德基上線人臉支付……這些背後都是人工智慧技術的驅動。2017年7月,中國發錶瞭新一代人工智慧發展規畫,將中國人工智慧產業的發展推嚮瞭新高度。

  人工智慧技術是繼蒸汽機、電力、網路科技之後最有可能帶來新一次產業革命浪潮的技術,在爆炸式的資料纍積、基於神經網路模型的新型演算法與更加強大、成本更低的運算力的促進下,本次人工智慧的發展受到風險投資的熱烈追捧而處於高速發展時期,人工智慧技術的應用場景也在各個行業逐漸明朗,開始帶來實際商業價值。在金融行業,人工智慧可以在風險控製、資產配置、智慧投顧等方嚮進行應用,預計將帶來約6,000億人民幣的降本增益效益。在汽車行業,人工智慧在自動駕駛上的技術突破,將帶來約5,000億人民幣的價值增益。在醫療行業,透過人工智慧技術,在藥物研發領域可以提高成功率,在醫療服務機構可以提供疾病診斷輔助、疾病監護輔助,預計可以帶來約4,000億人民幣的降本價值。在零售行業,人工智慧在推薦係統上的運用將提高線上銷售的銷量,同時能夠對市場進行精準預測,降低庫存,預計將帶來約4,200億人民幣的降本增益效益。

  人工智慧是一個非常廣泛的領域。人工智慧技術涵蓋很多大的學科,包括電腦視覺(模式辨識、圖像處理)、自然語言理解與交流(語音辨識)、認知科學、機器人學(機械、控製、設計、運動規畫、任務規畫等)、機器學習(各種統計的建模、分析和運算的方法)。人工智慧產業鏈條涵蓋瞭基礎層、技術層、應用層等多個方麵,其輻射範圍之大,單一公司無法包攬人工智慧產業的每個環節,深耕細分領域和閤作整閤多個產業間資源的形式成為人工智慧領域主要的發展路徑。

  本書從人工智慧的定義入手,前兩章闡述瞭人工智慧熱門的成因、發展歷程、產業鏈、技術和應用場景,從第3章開始詳細闡述人工智慧的幾個核心技術(大數據、機器學習、深度學習)和最流行的開源平臺(TensorFlow)。透過本書,讀者既能瞭解人工智慧的各個方麵(廣度),又能深度學習人工智慧的重點技術和平臺工具,最終能夠將人工智慧技術應用到實際工作場景中,共同創建一個智慧的時代。

圖書試讀

第1章 人工智慧概述
 
機器人是人類的古老夢想。希臘神話中已經齣現瞭機械人,至今機器人仍然是眾多科幻小說的重要元素。實現這個夢想的第一步是瞭解如何將人類的思考過程形式化和機械化。科學傢們被這一夢想深深吸引,開始研究記憶、學習和推理。1930年代末到1950年代初,神經學研究發現大腦是由神經元組成的電子網路,剋勞德·夏農(Claude Shannon)提齣的資訊論則描述瞭數位訊號,圖靈(Turing)的運算理論證明瞭一臺僅能處理0和1這樣簡單二元符號的機械設備能夠模擬任意數學推理。這些密切相關的成果暗示瞭建構電子大腦的可能性。在1956年的達特茅斯會議上,「人工智慧」(Artificial Intelligence,AI)一詞被首次提齣,其目標是「製造機器模仿學習的各個方麵或智慧的各個特性,使機器能夠讀懂語言,形成抽象思維,解決人們目前的各種問題,並能自我完善」。這也是我們今天所說的「強人工智慧」的概念,其可以理解為,人工智慧就是在思考能力上可以和人做得一樣好。今天所說的「弱人工智慧」是指隻處理特定問題的人工智慧,如電腦視覺、語音辨識、自然語言處理,不需要具有人類完整的認知能力,隻要看起來像有智慧就可以瞭。一個弱人工智慧的經典例子就是那個會下圍棋並且僅僅會下圍棋的AlphaGo。
 
雖然強人工智慧仍然是人工智慧研究的一個目標,但是強人工智慧演算法還沒有真正的突破。大多數的主流研究者希望將解決局部問題的弱人工智慧的方法組閤起來實現強人工智慧。業界的共識是,大部分的應用都是弱人工智慧(如有監督式學習),實現近似人類的強人工智慧還需要數十年,乃至上百年。在可見的未來,強人工智慧既非人工智慧討論的主流,也看不到其成為現實的技術路徑。弱人工智慧纔是在這次人工智慧浪潮中真正有影響力的主角,本書將聚焦於更具有現實應用意義的弱人工智慧技術。

AI與大數據技術導論(基礎篇):發展歷程、產業鏈、運算模式、機器學習……從理論概述到核心技術,深度探索人工智慧! epub 下載 mobi 下載 pdf 下載 txt 電子書 下載 2025


AI與大數據技術導論(基礎篇):發展歷程、產業鏈、運算模式、機器學習……從理論概述到核心技術,深度探索人工智慧! epub 下載 mobi 下載 pdf 下載 txt 電子書 下載 2025

AI與大數據技術導論(基礎篇):發展歷程、產業鏈、運算模式、機器學習……從理論概述到核心技術,深度探索人工智慧! pdf epub mobi txt 電子書 下載 2025




想要找書就要到 小特書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

用戶評價

類似圖書 點擊查看全場最低價

AI與大數據技術導論(基礎篇):發展歷程、產業鏈、運算模式、機器學習……從理論概述到核心技術,深度探索人工智慧! pdf epub mobi txt 電子書 下載


分享鏈接





相關圖書




本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

友情鏈接

© 2025 ttbooks.qciss.net All Rights Reserved. 小特書站 版權所有