序
電腦視覺(Computer Vision,CV) 又稱為機器視覺(Machine Vision,MV)主是一門研究如何使機器「看」的科學,更進一步的說它是用來指用攝影機和電腦代替人眼對物件進行辨識、追蹤和測量等機器視覺,隨著社會科技的發展,用電腦處理成為更適閤人眼觀察或傳送給儀器檢測的圖型。
深度學習則來自經典的神經網路架構,屬於機器學習領域,它透過不同形式的神經網路,結閤視覺巨量資料的大規模存量與不斷產生的增量進行訓練,自動提取細粒度的特徵,形成抽象化的視覺描述,在視覺分析方麵取得很大的進步,是當前人工智慧爆炸性發展的核心驅動。就目前技術而言,電腦視覺可分為以下幾個大方嚮:
• 圖型分類
• 物件偵測
• 圖型分割
• 圖型重構
• 圖型生成
• 人臉
• 其他
隨著巨量資料及人工智慧技術的不斷發展,電腦視覺以其可視性、規模性、普適性逐步成為AI 實作應用的關鍵領域之一,在理論研究和工程應用上均迅速發展。
Python 是一種電腦程式語言,是一種物件導嚮的動態類型語言,它在設計上堅持瞭清晰劃一的風格,這使得Python 成為一門易讀、易維護,並且被大量使用者所歡迎的、用途廣泛的語言。隨著Python 版本的不斷更新和語言新功能的增加,越來越多被用於獨立的、大型專案的開發。自從20 世紀90 年代初Python 語言誕生至今,它已被逐漸廣泛應用於係統管理任務的處理和Web 程式設計。
自電腦誕生以來,透過電腦來模擬人類的視覺便成為非常熱門且頗具挑戰性的研究課題。隨著數位相機、智慧型手機等硬體裝置的普及,圖型以其易於擷取、資訊相關性多、抗乾擾能力強的特點得到越來越廣泛的應用。
資訊化和數位化時代已經來臨,隨著對人工智慧領域的投入強度,電腦視覺處理的需求量也會越來越大,應用也將越來越廣泛。
因為Python 的好用、簡單、普遍等特性,所以本書的電腦視覺實現是在Python 完成,本書編寫特點主要錶現在:
(1)案例涵蓋麵廣、實用、擴充性、可讀性強。
本書以概述+ 案例的形式進行編寫,充分強調案例的實用性及程式的可擴充性,所選案例大多數來自日常生活中,應用性強。另外,書中每個案例的程式都經過偵錯與測試,同時程式碼中增加瞭大量的解釋說明,可讀性強。
(2)點麵完美結閤,兼顧性強。
本書點麵兼顧,涵蓋瞭數位影像處理中幾乎所有的基本模組,並涉及視訊處理、對位拼接、數位浮水印等進階影像處理方麵的內容,全麵講解瞭基於Python 進行電腦視覺應用的原理及方法,內容做到完美連結與統籌兼顧,讓讀者實現瞭由點到麵進行發散性延伸。
全書共20 章,每章節的主要內容包括:
第1 章介紹瞭電腦視覺程式設計基礎,主要包括電腦視覺的概述、Python程式設計軟體、幾個常用函數庫、Python 影像處理類別庫等內容。
第2 章介紹瞭去霧技術,主要包括空域圖型增強、時域圖型增強、色階調整去霧技術等內容。
第3 章介紹瞭形態學的去除雜訊,主要包括圖型去除雜訊的方法、數學形態學的原理、形態學運算等內容。
第4 章介紹瞭Hough 變換檢測,主要包括Hough 直線檢測、Hough 檢測圓等內容。
第5 章介紹瞭分割車牌定位辨識,主要包括車牌影像處理、定位原理、字元處理、字元辨識等內容。
第6 章介紹瞭分水嶺實現醫學診斷,主要包括分水嶺演算法、分水嶺醫學診斷案例分析等內容。
第7 章介紹瞭手寫數字辨識,主要包括捲積神經網路的概述、SVC 辨識手寫數字等內容。
第8 章介紹瞭圖片中英文辨識,主要包括OCR 的介紹、OCR 演算法原理、OCR 辨識經典應用、獲取驗證碼等內容。
第9 章介紹瞭小波技術的圖型視覺處理,主要包括小波技術的概述、小波實現去除雜訊、圖型融閤處理等內容。
第10 章介紹瞭圖型壓縮與分割處理,主要包括SVD 圖型壓縮處理、PCA圖型壓縮處理、K-Means 聚類圖像壓縮處理等內容。
第11 章介紹瞭圖型特徵比對,主要包括相關概念、圖型比對等內容。
第12 章介紹瞭角點特徵檢測,主要包括Harris 的基本原理、Harris 演算法流程、Harris 角點的性質、角點檢測函數、FAST 特徵檢測等內容。
第13 章介紹瞭運動物件自動檢測,主要包括幀差分法、背景差分法、光流法等內容。
第14 章介紹瞭浮水印技術,主要包括浮水印技術的概念、數位浮水印技術的原理、典型的數位浮水印演算法、浮水印技術案例分析等內容。
第15 章介紹瞭大腦影像分析,主要包括閾值分割、區域生長、區域生長分割大腦影像案例分析等內容。
第16 章介紹瞭自動駕駛應用,主要包括理論基礎、環境感知、行為決策、路徑規則運動控製及自動駕駛案例分析等內容。
第17 章介紹瞭物件偵測,主要包括RCNN 係列、YOLO 檢測等內容。
第18 章介紹瞭人機互動,主要包括Tkinter GUI 程式設計元件、佈局管理器、事件處理、Tkinter 常用元件、選單等內容。
第19 章介紹瞭深度學習的應用,主要包括理論部分、AlexNet 網路及案例分析、CNN 拆分資料集案例分析等內容。
第20 章介紹瞭視覺分析綜閤應用案例,主要包括越南大戰遊戲、停車場辨識費率係統等內容。
本書由佛山科學技術學院張德豐編寫。由於時間倉促,加之作者水準有限,所以錯誤和疏漏之處在所難免。在此,誠懇地期望得到各領域的專傢和讀者們的批評指正,聯繫電子郵件workemail6@163.com。
張德豐