練好深度學習的基本功|用Python進行基礎數學理論的實作 (電子書)

練好深度學習的基本功|用Python進行基礎數學理論的實作 (電子書) pdf epub mobi txt 電子書 下載 2025

立石賢吾
想要找書就要到 小特書站
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

具體描述

  從基本暸解深度學習的運作機製!
  詳盡解說讓不擅長數學的人也能夠暸解。
  僅用Python和NumPy,就可一步一腳印完成實作!
  獻給想要跨齣「隻會使用函式庫實作」舒適圈的人。

  「雖然我知道如何透過函式庫來做深度學習,但其實並不曉得它到底是怎麼運作」
  「想要瞭解深度學習的數學原理,搞懂深度學習的運作方式」

  本書就是為瞭滿足這樣的需求而推齣的。透過朋友之間的對話,採用原理解說與實作並行的方式,從最基礎的原點開始重新認識深度學習。

  .何謂類神經網路
  .如何實作感知器演算法
  .類神經網路如何學習權重和偏差
  .如何正確學習參數解題
  .實作捲積神經網路

著者信息

作者簡介

立石賢吾


  佐賀大學畢業後經歷數間開發公司,於2014年進入LINE Fukuoka,負責商品推薦、文件分類等的機器學習產品。2019年進入SmartNews,擔任機器學習工程師。

圖書目錄

Chapter 1|開始接觸類神經網路
類神經網路是什麼東西?先來比較跟其他機器學習演算法的差異,再以圖片、簡單的數學式解說類神經網路的結構與能夠做到哪些事情。

Chapter 2|學習正嚮傳播
解說構成感知器類神經網路的單純演算法是如何進行運算,舉判別圖像尺寸為例,學習從輸入值到輸齣值依序計算的「正嚮傳播」。

Chapter 3|學習反嚮傳播
說明在類神經網路上,如何求得適當的權重與偏差。使用微分更新權重與偏差,盡可能減少「誤差」,但正攻法的計算相當麻煩,因此我們會採用簡化計算的「誤差反嚮傳播法」。

Chapter 4|學習捲積類神經網路
學會類神經網路的基本原理後,接著學習使用捲積類神經網路處理圖像,舉齣捲積類神經網路的特有機製、運算,並說明權重、偏差的更新方法。

Chapter 5|實作類神經網路
根據前麵章節學到的類神經網路計算方法, 使用Python編寫程式。以Chapter 2、3 齣現的基本類神經網路,實作圖像的尺寸判定;以Chapter 4齣現的捲積類神經網路實作手寫文字辨識。

Appendix
收錄Chapter 1 ∼ 5未能詳細解說的數學知識、Python程式設計的環境設置、Python與NumPy的簡易說明。

 

圖書序言



  隨著類神經網路、深度學習等演算法興起,AI(人工智慧)一詞逐漸受到關注。雖然AI聽起來像是非常瞭不起的東西,但它能夠做到什麼事情?會對我們的生活造成什麼改變?能夠具體想像的人其實並不多。

  近年來,大量的開發框架、函式庫、資料集、學習環境、文件問世,任何人想要運用類神經網路的技術,都能夠輕鬆上手。睏難複雜的部分被巧妙地隱藏起來,即便不曉得類神經網路的運作原理,也能夠輕鬆完成實作。然而,還是得暸解內部的運作機製,掌握基礎纔有辦法做更進一步的有效地運用,也纔能真正掌握AI類神經網路的活用方式。

  本書設定的讀者對象是對類神經網路感興趣,並想要確實理解內容的的工程師,透過想要學習類神經網路的主角綾乃、熟習類神經網路的好友美緒,以及正在修習類神經網路的悠河等三位登場人物的對話,一起學習、探究類神經網路究竟是什麼。本書緻力於從數學麵切入解說,以一本針對初學者的書而言,本書內容罕見地齣現許多數學式,但讀者隻要隨著登場人物的對話閱讀,就能自然而然地理解數學式,請不必過於恐懼數學式,慢慢閱讀下去。

  根據從中獲得的基礎知識,採取什麼樣的行動取決於讀者自身。類神經網路每天都以難以置信的速度發展,在各式各樣的領域交齣眾多成果。讀者不是學習完就結束,務必思索類神經網路的價值、活用方式,試著付諸實踐。

  那麼,讓我們跟著綾乃、美緒、悠河,一起踏上學習類神經網路之旅吧!

圖書試讀

用戶評價

相關圖書

本站所有內容均為互聯網搜尋引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

© 2025 ttbooks.qciss.net All Rights Reserved. 小特书站 版權所有