貝氏統計因 AI 機器學習的發展而再度翻紅,其核心是利用統計推論的方法,在觀測到新證據或取得新資訊時,利用科學方法循環更新先前假設的機率,非常適合只能依據僅有的且不夠完整的資訊進行假設評估的技術。目前廣泛應用於機器學習、深度學習、資料科學、大數據分析等領域。
正經八百的念經書只會讓人想睡覺,而本書很不一樣,作者依其自身的(慘痛)經歷規劃出這本神奇之書,隨時與學習者站在一起,將腦海經常冒出來的疑問,以豐富的圖表、實作輔助並提供許多參考資源的問答方法呈現。對於重要觀念與公式,也用不同顏色標示(對了!本書是彩色書,灑花),不斷的前後呼應提醒,才不會讀到後面卻忘了前面,進而確實掌握貝氏統計的精髓。本書討論到 MCMC (馬可夫鏈蒙地卡羅法)之處尤其精彩,一般貝氏書籍或網路文章只講理論或舉個簡單例子交代一下就完事了,而本書是實實在在的帶領讀者一遍一遍的演練,落實從做中學的精神。
對於想瞭解貝氏統計的各領域專業人員,包括機器學習、深度學習、生命與醫學、心理學、公共衛生、商業數據分析等,都是淺顯易懂的好書。也適合學習統計、人工智慧相關領域大學高年級與研究所程度的學生。
本書特色
○由施威銘研究室監修內容,適時補充編註與譯註,幫助讀者確實理解內容。
○貫徹『講七遍、做二十一遍』的精神,真正從做中學會的就不會忘記。
○本書厚達六百多頁,為考慮到學習的便利性與舒適性,採用全彩印刷容易分辨重點、並以軟精裝裝訂可攤平閱讀。
○額外提供原文書也沒有的書中分佈函數 Python 程式碼下載,可自行修改參數觀察函數圖形變化。