Introduction to Plasma Phenomena and Plasma Medicine

Introduction to Plasma Phenomena and Plasma Medicine pdf epub mobi txt 电子书 下载 2025

图书标签:
  • Plasma Physics
  • Plasma Medicine
  • Plasma Phenomena
  • Biomedical Engineering
  • Physics
  • Medical Physics
  • Plasma Applications
  • Health Technology
  • Surface Science
  • Materials Science
想要找书就要到 小特书站
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

具体描述

This book is intended to present the application of plasma phenomena to wide variety of fields. Therefore, even if the readers do not know the plasma phenomena at present, you could understand what the plasma is and what kind of typical characteristics it has. This book is useful for the people who are studying or working in the fields of chemical engineering, electronic engineering, energy and environmental engineering or medical surgery and treatment fields, as well as in the plasma major. However, the readers are required to have leaned fundamental electromagnetism for full understanding the contents of this book. After understanding or knowing the plasma characteristics, you could improve or develop new application fields based on the plasma.

  In Chapter 1, and through Chap. 4, what is the plasma is introduced by explaining terrestrial, space and astrophysical phenomena as well as artificially produced ones. These phenomena are easy to see or be made in daily life. In other words, plasmas are quite popular phenomena. The key techniques for keeping plasma in clean vessel are discussed by explaining the vacuum system. The standard diagnostic methods for obtaining plasma characteristics are also explained.

  From Chapter 5, and through Chap. 7, main parts of this book are described, including the application of plasma phenomena to the material processing, energy and environmental fields, medical fields, and the combined area of these fields. The controlled thermonuclear fusion is strongly anticipated phenomena for the future energy source. The nuclear fusion, however, has vast variety of engineering tasks and fields, but this book cannot cover entire subject with respect to nuclear fusion physics and engineering. Another advanced energy source is the high energy particle beam source. With help of plasma, this system is expected to become quite small, typically 1/1000, compared with the present high energy particle accelerators. Wide variety of applications to the environmental fields such as exhaust gases treatments are also introduced.

  On the other hand, fresh plants require a lot of carbon dioxide, CO2, as well as sun light. As a new technique for recycling of CO2, this gas is introduced into the greenhouse for cultivation of plants. Sterilization with use of plasma is one of other key techniques, by producing ozone in the oxygen. However, ozone is very toxic and it is not good in surrounding of human, and other nontoxic method is introduced.

  The applications of plasma to the medical fields have wide variety of fields, such as surgery, surface coating of the materials used within human body and many others. In the plasma surgery, for example, damages on the surround cells of the body are quite limited compared with use of metal surgery knives. The plasma medicine is an innovative and effective for therapeutic and surgery applications in the future.
《等离子体现象与技术原理导论》 图书简介 本书旨在为物理学、工程学、材料科学及相关领域的学生、研究人员和专业技术人员提供一个全面而深入的等离子体基础理论与应用技术框架。等离子体,作为物质的第四态,是宇宙中最普遍存在的物质形态,其独特的物理、化学和电磁特性使其在基础科学研究和高新技术领域扮演着至关重要的角色。 第一部分:等离子体基础物理 本书的开篇部分系统地阐述了等离子体的基本概念、形成机制以及宏观和微观的物理特性。我们将从气体放电的物理过程入手,详细剖析等离子体中粒子(电子、离子、中性粒子)的输运、碰撞和辐射机制。 1.1 等离子体的定义与分类: 深入探讨了等离子体的判据,包括德拜屏蔽、等离子体频率和碰撞频率的相对大小。根据粒子的温度、密度和电离度,对热等离子体(如星际介质、恒星内部)和冷等离子体(如工业处理、聚变研究)进行精确分类和比较。 1.2 动力学理论: 重点介绍描述等离子体行为的关键理论工具。包括基于玻尔兹曼方程的输运理论,以及用于描述宏观特性的流体力学模型,如单流体模型和两流体模型。对等离子体中的电磁场耦合效应进行了详尽的分析,引入了麦克斯韦方程组在等离子体介质中的应用,特别是波的传播和散射现象。 1.3 磁流体力学(MHD)基础: 阐述了磁场对等离子体运动的约束和影响。MHD 理论是理解高密度、高温度等离子体(如聚变等离子体)稳定性的核心。详细讨论了磁拓扑结构、磁雷诺数、磁扩散以及等离子体中的磁重联等关键现象。 1.4 粒子动力学与静电相互作用: 深入分析了电子和离子的运动规律,特别是回旋运动和漂移运动。通过分析德拜球内的静电屏蔽,解释了等离子体作为一个准中性系统的基本特征。同时,介绍了用于模拟复杂粒子相互作用的蒙特卡洛方法和粒子束模型。 第二部分:等离子体诊断与测量技术 准确的诊断是理解和控制等离子体的基础。本部分聚焦于现代等离子体实验和工业过程中使用的主要诊断技术,强调了非干扰性、高时间分辨率和空间分辨测量的必要性。 2.1 电学与光学诊断: 涵盖了探针诊断技术,如朗缪尔探针(用于测量电子温度和密度)、射频探针(用于测量等离子体电势)和法拉第笼。在光学诊断方面,详细介绍了发射光谱法(OES)在确定原子和分子激发态、温度和组分分析中的应用。重点讨论了激光诱导荧光(LIF)和汤姆孙散射(Thomson Scattering)在精确测量电子温度和密度方面的优势。 2.2 粒子束诊断: 讨论了利用中性原子束或离子束穿透等离子体以获取内部参数的方法,如吸收光谱法和中性粒子分析(NPA)。 2.3 空间与时间分辨技术: 介绍了如何通过高速摄像、时间分辨光谱以及多点测量技术来捕捉等离子体不稳定性、湍流结构和瞬态放电过程。 第三部分:等离子体产生与源技术 本部分系统地分类和介绍了产生各种类型等离子体的关键技术,这些技术是实现等离子体应用的前提。 3.1 低温等离子体源(非热力学平衡): 详述了最常见的冷等离子体生成方法: 直流(DC)和射频(RF)放电: 涵盖了辉光放电、介质阻挡放电(DBD)的物理原理、工作模式和功率耦合机制。 微波等离子体: 介绍了通过电子回旋共振(ECR)和表面波激励产生的等离子体,它们具有高电子密度和低气体温度的特点。 磁场增强放电: 如磁控溅射源,重点分析磁场对电子约束和溅射效率的影响。 3.2 高温等离子体源(热力学平衡): 主要关注能源和推进领域应用的热等离子体源。 电弧放电: 讨论了高电流密度下等离子体的产生、热负荷管理和电极材料的选择。 感应耦合等离子体(ICP)炬: 详细阐述了射频功率如何通过感应耦合耦合到气体中形成高温炬,以及其在材料加工中的应用潜力。 第四部分:等离子体在材料科学与工程中的应用 本部分聚焦于等离子体对材料表面的改性和沉积过程,这是等离子体技术在现代制造业中应用的核心。 4.1 等离子体沉积技术: 深入探讨了利用等离子体激活的化学气相沉积(PECVD)原理。分析了等离子体环境如何促进气相前驱体的解离、活性物种的迁移和薄膜的生长。对比了不同类型等离子体源对薄膜结构、应力和化学组分的影响。 4.2 等离子体刻蚀技术: 详细介绍了反应离子刻蚀(RIE)、深层反应离子刻蚀(DRIE)等关键工艺。解析了物理轰击和化学反应在实现高深宽比、高选择性刻蚀中的协同作用。讨论了等离子体各向异性(Anisotropy)的形成机制。 4.3 等离子体表面改性: 涵盖了利用离子束或等离子体对材料表面进行辐照改性的技术,如离子注入、等离子体浸渍离子注入(PIII)、以及用于提高材料硬度、耐磨性和生物相容性的表面硬化技术。 第五部分:先进等离子体应用领域概述 本书的最后一部分将目光投向等离子体技术在多个前沿交叉学科中的应用潜力。 5.1 空间推进: 简要介绍了等离子体推进的概念,包括霍尔效应推进器(HET)和栅格离子推力器的工作原理及其在深空任务中的优势。 5.2 环境治理: 探讨了利用非平衡态等离子体处理挥发性有机化合物(VOCs)、氮氧化物(NOx)和二氧化硫(SO2)的污染物去除机理,强调了等离子体对化学惰性污染物的激活能力。 5.3 真空技术与表面清洗: 介绍了等离子体在半导体制造中作为无损清洗剂去除光刻胶残留和有机污染物的过程,以及等离子体活化在提高表面润湿性方面的作用。 通过对这些领域的系统阐述,本书旨在为读者构建一个坚实的理论基础,并启发他们探索等离子体现象的无限应用前景。本书的叙述力求严谨且具启发性,避免过度依赖复杂数学推导,侧重于物理图像的建立和工程应用的理解。

著者信息

作者简介

Yasushi Nishida


  Professor Yasushi Nishida received the B.S., M.S., and Ph.D. degrees in Electronic Engineering from Tohoku University, Sendai, Japan. He was with Utsunomiya University, Utsunomiya, Japan since 1973. He was the Dean of the Faculty of Engineering and Graduate School of Engineering, and also a Trustee and Vice-President from 2004 to the end of March 2007. He has also worked in the capacity of Director of Cooperative Research Center of Utsunomiya University and Director of the Institute of Electrical Engineers of Japan, Tochigi branch. He is currently a professor with National Cheng Kung University, Taiwan. He is a Professor Emeritus with Utsunomiya University and an Honorary Professor with University of Electronic Science and Technology of China, Sichuan, China and also with Zhejiang University of Technology, Zhejiang, China. He has been a pioneer in the world of the experimental researches on the plasma-based accelerator phenomena by employing high-power microwaves or ultra-short high-power lasers. He is currently involved in the application of pulsed discharge source for production of hydrogen fed directly to fuel cell on the vehicle. He is also involved in disinfecting the contaminated air with use of plasma. He was awarded The Commendation for Science and Technology by the Minister of Education, Culture, Sports, Science and Technology, Japan. Prizes for Science and Technology in Research Category on “Discovery of Particle Acceleration by Plasma and Investigations on the Ultra-Small Accelerators” on April 11, 2011 and many others. Prof. Nishida was elected as a Fellow of the American Physical Society in 1992.

Keng-Liang Ou

  Professor Keng-Liang Ou obtained his Ph.D. degree from Graduate Institute of Mechanical Engineering, National Chiao Tung University, Taiwan. He joined Taipei Medical University to pursue the cutting-edge research of biomaterials. He is also the Director of Research Center for Biomedical Implants and Microsurgery Devices and the Director of Research Center for Biomedical Devices and Prototyping Production. Besides institutional appointment, Prof. Ou serves as the President of Institute of Plasma Engineering in Taiwan, the Director of the Taiwan Society for Metal Heat Treatment, the President of Taiwan Oral Biomedical Engineering Association and the Director of Yongee Anti-cancer Foundation. Professor Ou devotes himself to the novel research in the fields of biomaterials, bioengineering, biosensing, bioimaging, and translational medicine. In addition, he establishes extensive collaborations with industry and has played a leading role in developing medical devices for health professionals worldwide. He is the leader and organizer for the biomedical product design, production, manufacturing, testing, legalization and market planning, with supports from teams of scientists and researchers with expertise in different fields. With the outstanding accomplishments in research and invention, Professor Ou received the Award of the Ten Outstanding Young Persons of Taiwan in the year of 2011 and the TMU Distinguished University Professor Award in 2014. Today he is CEO of 3D Global Biotech Inc., which is a spin-off company from Taipei Medical University.

图书目录

Preface

Chapter 1 What is Plasma?   
1.1 Introduction
1-1-1 Fluid model
1-1-2 Kinetic model
1-2 Artificially-Produced Plasma
1-2-1 Plasma displays
1-2-2 Fluorescent lamps and neon signs
1-2-3 Industrial application
1-2-4 Fusion energy researches
1-3 Terrestrial Plasma
1-3-1 Lightning
1-3-2 Sprites
1-3-3 St. Elmo’s fire
1-3-4 The polar aurora, northern lights
1-4 Space and Astrophysical Plasma
1-4-1 The Sun and other stars
1-4-2 The solar wind
1-5 Definition of Plasma and Fundamental Characteristics
1-5-1 Plasma properties and parameters
1-5-2 Comparison of plasma and gas phases
1-6 Complex Plasma Phenomena
1-6-1 Filamentation
1-6-2 Shocks or double layers
1-6-3 Cellular structure
1-6-4 Electric fields and circuits
1-6-5 Critical ionization velocity
1-6-6 Ultracold plasma
1-6-7 Non-neutral plasma
1-6-8 Dusty plasma and grain plasma

Chapter 2 Methods for Plasma Production   
2-1 Basic Mechanism of Plasma Production
2-1-1 Townsend discharge and discharge start voltage
2-1-2 Self- sustaining discharge voltage
2-1-3 Structure of glow discharge
2-1-4 High frequency discharge
2-2 Plasma Production in Low Gas Pressure
2-3 Plasma Production in High Gas Pressure
2-3-1 Corona discharge
2-3-2 Electric spark
2-3-3 Dielectric barrier discharge
2-4 Plasma Production by Lasers
2-4-1 Introduction to physics of lasers
2-4-2 Types of lasers
2-4-3 Plasma production by lasers
2-4-4 Laser classifications

Chapter 3 Key Techniques for Plasma Production   
3-1 Vacuum Technology
3-1-1 Definition of vacuum
3-1-2 Necessity of ultra-high vacuum (UHV)
3-1-3 The mechanism of the vacuum pump operation
3-2 Vacuum Theory Using Ideal Gas Properties
3-2-1 Collision parameters
3-2-2 Three regions of gas flow
3-2-3 Molecular transport and pumping laws
3-2-4 Pumping law in the high and
ultra-high vacuum regions
3-3 Practical Vacuum Techniques
3-3-1 Transfer or rotary pump
3-3-2 Diffusion pumps
3-3-3 Turbomolecular pumps
3-3-4 Sorption pump
3-3-5 Simplified vacuum system design
3-3-6 Summary of vacuum pumps and their characteristics
3-4 Vacuum Measuring Technique
3-4-1 Manometer
3-4-2 Membrane gauge
3-4-3 Electronic gauge

Chapter 4 Plasma Diagnostics   
4-1 Langmuir Probe Method
4-1-1 Single probe [1,2]
4-1-2 Emissive probe
4-1-3 Double probe [4,5]
4-1-4 Triple probe [6]
4-1-5 High frequency resonance probe
4-1-6 Ion sensitive probe
4-2 Microwave Interferometry and Reflectmetry
4-2-1 Plasma density measurements by microwave interferometry
4-2-2 Plasma density measurement by microwave reflectometry
4-2-3 Laser interferometry
4-3 Spectroscopy
4-3-1 Refraction of light
4-3-2 Spectroscopy
4-3-3 Instruments
4-3-4 Measurement process
4-3-5 Measured physical quantity
4-4 Laser Spectroscopy
4-4-1 Thomson scattering [18]
4-4-2 Stark effect [19]
4-4-3 Zeeman interaction [19]

Chapter 5 Plasmas for Material Processing   
5-1 Low Temperature Plasmas
5-1-1 Plasma CVD and its characteristic feature
5-1-2 Plasma source for plasma CVD
5-1-3 Some examples of application of plasma CVD
5-2 Thermal Plasma
5-2-1 DC arc plasma
5-2-2 RF torch plasma
5-2-3 Microwave torch plasma

Chapter 6 Applications to Energy and Environmental Fields
6-1 Inroduction
6-2 Light Source and Display Systems
6-2-1 Light sources
6-2-2 Plasma display [3,4]
6-3 Controlled Thermonuclear Fusion for
Future Energy Sources
6-3-1 Principle of thermonuclear fusion
6-3-2 Fusion devices and experimental
results216
6-3-3 Fusion sites and international
collaboration
6-4 Particle Beam Source
6-4-1 Ion beam source
6-4-2 Neutral beam source
6-5 High Energy Particle Accelerator
6-5-1 High energy particle accelerator
6-5-2 Principle of charged particle acceleration
6-5-3 Vp×B acceleration (Surfatron)
6-5-4 Plasma beat wave accelerator
6-5-5 Plasma wakefield acceleration
6-5-6 Laser wakefield acceleration
6-5-7 Acceleration distance and optical guiding
6-6 Application to Environmental Engineering
6-6-1 Ozone production and application
6-6-2 Volatile organic compounds treatment by electrostatic precipitator
6-6-3 Exhaust gas treatment by electrostatic precipitation
6-6-4 Recycled usage of exhaust gases
6-6-5 Sterilization by plasma

Chapter 7 Biomedical Application of Plasma Technology   
7-1 Introduction339
7-2 Application of Plasma on Artificial Devices
7-2-1 Effect of plasma treatment on biocompatibility and osseointegration of Ti implant
7-2-2 Wettability of implant surface improved by plasma treatment
7-2-3 Enhancement of wear and corrosion resistance by plasma treatment
7-2-4 Anti-bacterial properties of plasma nitrided layers on biomedical devices
7-2-5 The interaction between blood and material interfaces
7-2-6 Influence of surface morphology on implant
7-2-7 Pretreatment of biomaterial surface
7-2-8 Application of plasma on biomaterials
7-2-9 Application of plasma on Ti-based biomaterials
7-3 Application of Argon Plasma on Tissue of Organism
7-3-1 Basic principle of argon plasma coagulation (APC)
7-3-2 Thermal injury caused by high power argon plasma
7-3-3 Efficacy of APC therapy
7-3-4 Dependence of pulsed mode APC

Appendix   
Index   
Exercises   

图书序言

图书试读

1.1 Introduction

A plasma is typically an ionized gas, and is usually considered to be a distinct state of matter or is called Řth state of matter" in contrast to solids, liquids and gases because of its unique properties. "Ionized" means that at least one electron has been dissociated from, or added to, a proportion of the atoms or molecules. The free electric charges make the plasma electrically conductive so that it responds strongly to electromagnetic fields. [1]

Plasma typically takes the form of neutral gas-like clouds, that is, in total including whole of the matters of electrons and ions, they are kept electrically neutral in macroscopic point of view, but may also include dust and grains (called dusty plasmas in this case). They are typically formed by heating and ionizing a gas, stripping electrons away from atoms, thereby enabling the positive and negative charges to move freely.

This state of matter was dubbed "plasma" by Irving Langmuir in 1928 [2] because it reminded him of a blood plasma. Langmuir wrote:

"Except near the electrodes, where there are sheaths containing very few electrons, the ionized gas contains ions and electrons in about equal numbers so that the resultant space charge is very small. We shall use the name plasma to describe this region containing balanced charges of ions and electrons."[1]

用户评价

评分

作为一个对等离子体医学抱有极大兴趣但又非物理专业出身的医学生,我常常在阅读相关文献时感到力不从心。很多文章充斥着晦涩难懂的物理公式和术语,让我望而却步。所以,当我看到《Introduction to Plasma Phenomena and Plasma Medicine》这本书时,我的内心是充满期待的。我希望这本书能够以一种“翻译”者的角色,将复杂的物理概念转化为医学生容易理解的语言。我特别期待书中在讲解等离子体现象时,能辅以生动形象的比喻和图示,比如将电子的运动比作“一群活泼的小精灵”,将离子化过程比作“失去或获得电子的‘能量转换’”。当然,我也希望它能在“等离子体医学”的部分,更侧重于临床应用的介绍。我想了解,目前有哪些等离子体技术已经被成功应用于医疗领域,例如在皮肤病治疗、口腔疾病防治、肿瘤消融、伤口愈合等方面。如果能有相关的案例分析,或者介绍一些具体的治疗流程和预期效果,那对我来说将是巨大的帮助。我还想知道,等离子体治疗的优势和局限性在哪里?相比于传统的治疗方法,它有哪些独特之处?这本书能否为我提供一个清晰的概览,让我能够对等离子体医学有一个全面而准确的认识,从而在未来的学习和实践中,更好地把握这个新兴领域的发展方向。

评分

作为一名对新兴技术在生命科学领域应用充满好奇的学习者,我对“等离子体医学”这个领域一直抱有极大的热情。然而,真正深入了解其中的科学原理,却是我一直面临的挑战。《Introduction to Plasma Phenomena and Plasma Medicine》这本书名,让我看到了一个绝佳的学习机会。我非常期待书中能够从最基础的等离子体物理学概念讲起,例如等离子体的定义、特征、分类(如热平衡等离子体与非热平衡等离子体),以及各种主要的等离子体产生方式。然后,逐步过渡到等离子体在生物医学领域的应用,例如在消毒灭菌、伤口愈合、肿瘤治疗、药物递送等方面的机理和实践。我尤其看重书中能否提供一些直观的图解和模型,来帮助我理解等离子体与生物分子、细胞、组织之间的复杂相互作用。如果书中还能包含一些关于等离子体医学设备的设计原理和技术发展趋势的介绍,那将是锦上添花。这本书无疑将为我打开一扇通往等离子体医学世界的大门。

评分

天呐,我简直不敢相信我终于找到了这本书!《Introduction to Plasma Phenomena and Plasma Medicine》!我一直在寻找一本既能深入浅出地讲解等离子体现象,又能切实触及等离子体医学应用的教材,市面上真的太少了,很多书要么是过于理论化,要么就是只关注某个狭窄的领域。当我看到这本书的名字时,我的心都激动起来了。封面设计也相当专业,简洁大气,一看就知道是精心制作的。我迫不及待地翻开第一页,文字的排版就让人眼前一亮,清晰的字体,合理的行距,阅读体验非常好,不会造成视觉疲劳。而且,序言部分就充满了作者的诚意,字里行间都能感受到他们对于将复杂科学知识普及给更广泛读者的热忱。我尤其期待书中关于等离子体生成原理的章节,希望能看到各种主流等离子体源的详细介绍,比如直流辉光放电、射频放电、微波放电,甚至是新兴的介质阻挡放电等等。更重要的是,我希望书中能清晰地阐述不同等离子体源的特性、优缺点以及它们在不同应用场景下的适用性。如果能再配上一些原理示意图,那简直就是锦上添花了。我一直觉得,理解了等离子体的“如何产生”,才能更好地理解“它能做什么”。这本书的名字给了我巨大的信心,我相信它一定能填补我在这方面的知识空白,让我对等离子体现象有一个系统且深刻的认识。

评分

这本书的出现,简直就像在茫茫书海中点亮了一盏灯塔,让我这个在等离子体医学领域摸索多年的科研人员看到了新的希望。长久以来,虽然我们一直在临床上尝试应用各种等离子体技术,但背后深层的物理化学机制往往是我们理解的薄弱环节。我尤其关注的是书中关于“等离子体现象”的阐述,希望它能不仅仅是简单罗列一些物理定律,而是能以一种循序渐进、逻辑严密的方式,将等离子体的基本概念、特性、以及各种重要的物理和化学过程,如电离、激发、复合、碰撞过程等等,都解释得清清楚楚。我非常看重的是,这本书能否帮助我理解不同等离子体参数,比如电子温度、等离子体密度、活性粒子种类和浓度等,是如何影响等离子体性能以及最终的生物效应的。如果书中能提供一些实际的测量方法和数据分析的指导,那就更完美了。我一直在思考,为什么某些等离子体在杀菌消毒方面效果显著,而另一些却更适合促进伤口愈合,这背后的物理机制到底是什么?这本书能否提供一些解答?我非常期待书中能够深入剖析等离子体与生物组织相互作用的微观过程,例如活性氧(ROS)和活性氮(RNS)的产生与清除,电场和磁场的作用,以及等离子体诱导的细胞信号传导等。

评分

作为一名长期在生物材料领域工作的研究者,我一直密切关注着如何利用先进技术来改善生物材料的性能,特别是提高其生物相容性和促进组织再生。等离子体处理,尤其是低温等离子体处理,在表面改性方面展现出巨大的潜力,能够显著改变材料的表面能、润湿性、电荷分布以及引入特定的官能团,从而影响细胞的黏附、增殖和分化。因此,《Introduction to Plasma Phenomena and Plasma Medicine》这本书对我来说,简直是“及时雨”。我非常期待书中能够详细介绍等离子体在材料表面改性方面的具体应用,例如如何通过等离子体处理来提高聚合物支架的细胞黏附性,如何制备具有抗菌功能的表面,或者如何诱导表面形成具有特定生物活性的涂层。我希望书中能够提供一些具体的等离子体处理参数(如气体种类、功率、处理时间等)与材料表面性质变化之间的关联性分析,以及这些表面性质变化如何最终影响材料的生物学性能。如果书中还能涉及到等离子体辅助的纳米材料制备,或者在生物打印技术中应用等离子体,那将是对我研究方向的巨大启发。这本书无疑将为我提供坚实的理论基础和创新的研究思路。

评分

这部《Introduction to Plasma Phenomena and Plasma Medicine》的书名,听起来就充满了科学的严谨性和前沿的探索性。我一直关注着非热平衡等离子体在各个领域的发展,尤其是它在生物医学领域的应用,给我留下了深刻的印象。这本书的出现,让我看到了一个将基础科学原理与实际应用完美结合的契机。我非常期待书中能够详细阐述非热平衡等离子体的形成机制,以及其独特的“冷”特性,即等离子体整体温度不高,但其中电子温度却可以很高,这使得它能够在不损伤生物组织的情况下,产生丰富的活性粒子。我特别想了解,书中是如何解释这些活性粒子,例如自由基、紫外线等,是如何与生物分子发生相互作用的。是直接破坏DNA,还是通过诱导氧化应激,或者是激活细胞的内源性防御机制?我期待书中能给出清晰的物理化学解释,并与生物学效应联系起来。此外,我希望书中能够对不同的等离子体生成装置进行深入的比较和分析,比如它们在产生活性粒子种类、数量、分布以及能量输出方面的差异,以及这些差异如何影响其在医学领域的应用效果。这本书的出现,无疑为我们深入理解等离子体医学的科学内涵提供了绝佳的途径。

评分

这本书的出现,让我这个在等离子体物理研究领域深耕多年的学者,看到了一个将基础研究成果转化为实际应用,并可能造福人类的全新视角。《Introduction to Plasma Phenomena and Plasma Medicine》这个书名,精准地指出了其核心内容。我非常期待书中能够详细阐述,如何将对等离子体物理现象的深刻理解,应用到解决具体的医学问题上。我希望书中能够对不同类型的等离子体(例如,空气等离子体、氩等离子体、氦等离子体等)在生物医学应用中的优劣势进行深入分析,并探讨如何通过优化等离子体参数来提高其治疗效果和安全性。我还对书中关于等离子体在体内和体外应用的区别与联系的讨论感到非常好奇。例如,等离子体在皮肤表面进行消毒,与将其应用于体腔内或直接作用于血液,其产生的物理化学过程和生物学效应会有哪些显著差异?这本书无疑将为我们提供一个深入探索等离子体医学领域前沿研究的宝贵平台,并激发新的研究思路。

评分

一直以来,我都在寻找一本能够系统性地梳理“等离子体现象”与“等离子体医学”之间内在联系的著作,而《Introduction to Plasma Phenomena and Plasma Medicine》的出现,仿佛就是为我量身定制的。我非常期待书中能够深入探讨等离子体产生的活性物种,如原子、分子、自由基、离子、紫外辐射等,是如何直接或间接影响生物体的。我希望书中能清晰地解释,这些活性物种在细胞层面是如何引发一系列生化反应的,比如DNA损伤、氧化应激、炎症反应、细胞周期调控、甚至细胞凋亡等。更重要的是,我希望书中能够详细阐述,如何通过精确控制等离子体的参数(如气体组成、放电类型、功率、频率、处理时间等),来调控活性物种的产生,从而实现对生物效应的精准调控,达到治疗的目的。例如,如何优化等离子体参数来最大化杀菌效果,同时最小化对健康细胞的损伤?如何利用等离子体诱导的特定信号通路来促进伤口愈合?这本书无疑将为我提供一个深入理解等离子体医学背后的科学原理的宝贵资源。

评分

我一直对“等离子体医学”这个跨学科领域感到着迷,它结合了物理学、化学、生物学和医学,充满了无限的可能性。然而,作为一个在临床一线工作的医生,我往往缺乏深厚的物理学背景,导致在理解和应用等离子体治疗技术时,总是感觉隔靴搔痒。《Introduction to Plasma Phenomena and Plasma Medicine》这本书的出现,恰好填补了我在这方面的知识鸿沟。我非常期待这本书能够用一种易于理解的方式,深入浅出地讲解等离子体的基本概念和物理原理,并且能够清晰地阐述等离子体是如何与生物体发生相互作用的。我尤其关注书中关于等离子体在不同疾病治疗中的应用,例如,它在皮肤溃疡愈合、痤疮治疗、足部糖尿病溃疡处理,甚至是抗肿瘤治疗中的具体作用机制。我希望书中能提供一些权威的研究数据和临床试验结果,来佐证这些应用的有效性和安全性。此外,我还希望书中能够讨论等离子体治疗的潜在风险和副作用,以及如何规避这些风险,确保患者的安全。这本书无疑将为我提供一个更全面、更深入的视角,帮助我更好地理解和应用等离子体医学技术。

评分

当我第一次看到《Introduction to Plasma Phenomena and Plasma Medicine》这本书时,我的第一感觉是惊喜,因为我一直在寻找一本能够同时覆盖基础物理原理和前沿医学应用的综合性教材。这本书的出现,完全满足了我的需求。我非常期待书中能够系统地介绍等离子体产生的各种活性粒子,如臭氧、过氧化氢、氮氧化物、紫外线等,以及它们在生物体内的作用机制。我希望书中能够详细阐述,这些活性粒子是如何通过氧化应激、DNA损伤、信号通路激活等方式,对细菌、病毒、真菌,以及癌细胞产生抑制或杀灭作用的。同时,我也希望书中能够深入探讨,等离子体是如何促进伤口愈合、加速组织再生的。例如,等离子体是否能够刺激成纤维细胞的增殖,诱导血管生成,或者调控免疫反应?这本书的出现,无疑为我提供了一个深入了解等离子体医学的绝佳机会,让我能够更清晰地认识这个领域的发展方向和未来潜力。

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 ttbooks.qciss.net All Rights Reserved. 小特书站 版权所有